In this paper, we study extended linear regression approaches for quantum state tomography based on regularization techniques. For unknown quantum states represented by density matrices, performing measurements under a certain basis yields random outcomes, from which a classical linear regression model can be established. First of all, for complete or over-complete measurement bases, we show that the empirical data can be utilized for the construction of a weighted least squares estimate (LSE) for quantum tomography. Taking into consideration the trace-one condition, a constrained weighted LSE can be explicitly computed, being the optimal unbiased estimation among all linear estimators. Next, for general measurement bases, we show that $\ell_2$-regularization with proper regularization gain provides an even lower mean-square error under a cost in bias. The regularization parameter is tuned by two estimators in terms of a risk characterization. Finally, a concise and unified formula is established for the regularization parameter with a complete measurement basis under an equivalent regression model, which proves that the proposed tuning estimators are asymptotically optimal as the number of samples grows to infinity under the risk metric. Additionally, numerical examples are provided to validate the established results.


翻译:在本文中,我们研究了基于正规化技术的量子状态成像法的扩展线性回归法。对于以密度矩阵为代表的未知量国家,在一定基础上进行测量会产生随机结果,从而可以建立典型的线性回归模型。首先,对于完整或超完整的测量基础,我们表明,经验数据可用于构建量子成像法的加权最小方(LSE)估计值。考虑到“微量一”条件,可以明确计算受限制的加权 LSE,这是所有线性估测者之间最佳的无偏差估计。接下来,对于一般测量基础,我们表明,在适当正规化收益的情况下,$\ell_2美元的正规化在偏差成本下提供了更低的平均值方差。根据风险定性,由两个估测者对规范参数进行了调整。最后,在同等回归模型下,为正规化参数设定了一个精确和统一的公式,以完整的测量基础为基础,从而证明拟议的测算器是最佳的。此外,根据风险计量标准,所提供的数字示例是为了验证结果。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning the optimal regularizer for inverse problems
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员