Hyperbolic partial differential equations (PDEs) cover a wide range of interesting phenomena, from human and hearth-sciences up to astrophysics: this unavoidably requires the treatment of many space and time scales in order to describe at the same time observer-size macrostructures, multi-scale turbulent features, and also zero-scale shocks. Moreover, numerical methods for solving hyperbolic PDEs must reliably handle different families of waves: smooth rarefactions, and discontinuities of shock and contact type. In order to achieve these goals, an effective approach consists in the combination of space-time-based high-order schemes, very accurate on smooth features even on coarse grids, with Lagrangian methods, which, by moving the mesh with the fluid flow, yield highly resolved and minimally dissipative results on both shocks and contacts. However, ensuring the high quality of moving meshes is a huge challenge that needs the development of innovative and unconventional techniques. The scheme proposed here falls into the family of Arbitrary-Lagrangian-Eulerian (ALE) methods, with the unique additional freedom of evolving the shape of the mesh elements through connectivity changes. We aim here at showing, by simple and very salient examples, the capabilities of high-order ALE schemes, and of our novel technique, based on the high-order space-time treatment of topology changes.


翻译:超球部分偏差方程式(PDEs)涵盖从人类和听觉科学到天体物理学等一系列令人感兴趣的现象:这不可避免地需要处理许多空间和时间尺度,以便同时描述观察规模宏观结构、多尺度动荡特征和零尺度冲击。此外,解决超曲线部分方程式的数字方法必须可靠地处理波系不同的波系:平滑的稀释动作以及冲击和接触类型的不连续性。为了实现这些目标,有效的方法包括基于时空的高秩序组合,非常精确的光滑功能,甚至粗糙的电网,以及拉格朗格方法,通过移动流体流的网状组合,产生高度的分辨率和最小的分解效果。然而,确保高质量的移动模类是需要开发创新和非常规技术的巨大挑战。为了实现这些目标,这里提出的办法属于基于任意-劳改-奥利安(ALE)高阶系统(ALEE)的组合,甚至是粗粗网格的网格,非常精确的特征,使用拉格方法,这些方法,通过流流流流流的网状,产生高度的高度自由,通过我们高空系的系统结构,展示我们高端的高度的图图图图图图图图图图图图式,展示,通过我们高端的高度的高度的系统,显示我们高端图图图图图图图图图图图图的高度的转变,展示了我们高端的高度的系统。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员