We as software developers or researchers very often get stacktrace error messages while we are trying to write some code or install some packages. Many times these error messages are very obscure and verbose; do not make much sense to us. There is a good chance that someone else has also faced similar issues probably shared similar stacktrace in various online developers' forums. However traditional google searches or other search engines are not very helpful to find web pages with similar stacktraces. In order to address this problem, we have developed a web interface; a better search engine: as an outcome of this research project where users can find appropriate stack overflow posts by submitting the whole stacktrace error message. The current developed solution can serve real-time parallel user queries with top-matched stack overflow posts within 50 seconds using a server with 300GB RAM. This study provides a comprehensive overview of the NLP techniques used in this study and an extensive overview of the research pipeline. This comprehensive result, limitations, and computational overhead mentioned in this study can be used by future researchers and software developers to build a better solution for this same problem or similar large-scale text matching-related tasks.


翻译:作为软件开发者或研究人员,我们常常在试图写出某些代码或安装某些软件包时获得堆叠追踪错误信息。 许多时候,这些错误信息非常模糊和含糊; 对我们来说没有多大意义。 其他人也面临类似的问题, 很可能在各种在线开发者论坛中分享类似的堆叠图。 但是传统的谷歌搜索或其他搜索引擎对于找到拥有类似堆叠图的网页并不十分有用。 为了解决这一问题, 我们开发了一个网络界面; 一个更好的搜索引擎: 作为这个研究项目的结果, 用户可以通过提交整堆叠图错误信息找到合适的堆叠溢出点。 目前开发的解决方案可以在50秒内用一个带有300GB RAM 的服务器对顶层堆叠溢出点进行实时平行用户查询。 此研究提供了本研究中使用的 NLP 技术的全面概览, 以及研究管道的广泛概览。 未来的研究人员和软件开发者可以使用这一综合的结果、 限制 和计算间接结果, 来为同一问题或类似的大规模文本匹配相关任务构建更好的解决方案。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
“C 不再是一种编程语言!”
CSDN
0+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月3日
Characterizing Virtual Reality Software Testing
Arxiv
1+阅读 · 2022年11月3日
Arxiv
0+阅读 · 2022年11月3日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
“C 不再是一种编程语言!”
CSDN
0+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员