Errors in the representation of clouds in convection-permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural networks (ANNs) to estimate several parameters of the one-dimensional modified shallow-water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments, we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage, and neural network size is shown. Additionally, we use the method of layer-wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few gridpoints that are subject to strong winds and rain to make their predictions of chosen parameters.


翻译:云层在平流和透视性数字天气预测模型中的表达错误可以由不同来源引入。 更客观地说, 这些参数可以从数据同化期间以强化状态方法进行的观测中估算。 或者, 在这项工作中,我们通过人工智能透镜来审视参数估算问题,方法是培训两种人工神经网络(ANNS)来估算单维修改的浅水模型的若干参数,作为大气状态观测或分析的函数。 通过完美的模型实验,我们显示Bayesian 神经网络(BNNS)和Bayesian 的精确度近似点观测网络(NURs)的精确度估计值,我们通过模型的精确度观察范围来评估参数估算问题。 在模型中进行精确度测试时,我们只能通过模拟实验来评估其深度观测和大气状态。

0
下载
关闭预览

相关内容

【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
23+阅读 · 2021年1月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月26日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
23+阅读 · 2021年1月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员