We propose a machine learning-based method to build a system of differential equations that approximates the dynamics of 3D electromechanical models for the human heart, accounting for the dependence on a set of parameters. Specifically, our method permits to create a reduced-order model (ROM), written as a system of Ordinary Differential Equations (ODEs) wherein the forcing term, given by the right-hand side, consists of an Artificial Neural Network (ANN), that possibly depends on a set of parameters associated with the electromechanical model to be surrogated. This method is non-intrusive, as it only requires a collection of pressure and volume transients obtained from the full-order model (FOM) of cardiac electromechanics. Once trained, the ANN-based ROM can be coupled with hemodynamic models for the blood circulation external to the heart, in the same manner as the original electromechanical model, but at a dramatically lower computational cost. Indeed, our method allows for real-time numerical simulations of the cardiac function. We demonstrate the effectiveness of the proposed method on two relevant contexts in cardiac modeling. First, we employ the ANN-based ROM to perform a global sensitivity analysis on both the electromechanical and hemodynamic models. Second, we perform a Bayesian estimation of two parameters starting from noisy measurements of two scalar outputs. In both these cases, replacing the FOM of cardiac electromechanics with the ANN-based ROM makes it possible to perform in a few hours of computational time all the numerical simulations that would be otherwise unaffordable, because of their overwhelming computational cost, if carried out with the FOM. As a matter of fact, our ANN-based ROM is able to speedup the numerical simulations by more than three orders of magnitude.


翻译:我们建议一种基于机械的学习方法,用于构建一个差异方程式系统,该方法与3D电动机械模型的动态相近,并顾及对一组参数的依赖性。具体地说,我们的方法允许创建一个减序模型(ROM),该模型是普通差异方程式(ODE)系统,其中右手侧给出的强制术语由人工神经网络组成,该参数可能取决于一组与将代之以的电机模型相关的参数。这种方法是非侵入性的,因为它只需要从全序电动模型(FOM)中获取的压力和体积的中继器。我们的方法允许创建一个减序模型(ROM)(ROM)(ROM)(ROM)(ROM)(ROM)(ROM)(OM)(OD(OD)(OD(OD))(OD(OD))(OD(OD)(OD)(OD)(OD)(Oral-NL(ON)(Oral-I(O))(O(O))(Oralmo(O)(O)(Oral-IL)(OL)(OL)(O)(O)(OL)(O)(O)(O)(O)(O)(O)(O)(O)(OD)(OD)))(O))(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O))(O)(O)(O)(O)(O)(O)(O)(O)(O))(O)(O)(O))))(O)(O)(O)(O)(O))(O)(O)(O)(O))(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(O))(O)(O)))(O)(O)(O)(O))(O)(O)(O)(O)(O)(O)(O)(O)(O)(O)(

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
7+阅读 · 2018年12月10日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员