The FJet approach is introduced for determining the underlying model of data from a dynamical system. It borrows ideas from the fields of Lie symmetries as applied to differential equations (DEs), and numerical integration (such as Runge-Kutta). The technique can be considered as a way to use machine learning (ML) to derive a numerical integration scheme. The technique naturally overcomes the "extrapolation problem", which is when ML is used to extrapolate a model beyond the time range of the original training data. It does this by doing the modeling in the phase space of the system, rather than over the time domain. When modeled with a type of regression scheme, it's possible to accurately determine the underlying DE, along with parameter dependencies. Ideas from the field of Lie symmetries applied to ordinary DEs are used to determine constants of motion, even for damped and driven systems. These statements are demonstrated on three examples: a damped harmonic oscillator, a damped pendulum, and a damped, driven nonlinear oscillator (Duffing oscillator). In the model for the Duffing oscillator, it's possible to treat the external force in a manner reminiscent of a Green's function approach. Also, in the case of the undamped harmonic oscillator, the FJet approach remains stable approximately $10^9$ times longer than $4$th-order Runge-Kutta.
翻译:FJet 方法用于确定动态系统数据的基本模型。 它从利对称法领域( 适用于差异方程( DEs) ) 和数字集成( 如 龙格- 库塔 ) 中借用了利对称法的概念。 该技术可以被视为使用机器学习( ML) 来得出数字集成方案的一种方法。 该技术自然地克服了“ 外推问题 ”, 即当ML 用于在原始培训数据的时间范围以外外推一个模型时。 它通过在系统阶段空间而不是时间域中进行模型化来做到这一点。 当用一种回归方案的模式模型来精确确定基底的 DE 和参数集成( 如 龙格- 库塔 ) 时, 该技术可以用来确定运动的常数, 即使是被阻隔断和驱动的系统。 这些声明用三个例子来证明: 调控调法、 拆卸的硬调法, 和不线驱动的对焦法 。 在外的 递增法中, 的 递增法 。