Multi-source unsupervised domain adaptation~(MSDA) aims at adapting models trained on multiple labeled source domains to an unlabeled target domain. In this paper, we propose a novel multi-source domain adaptation framework based on collaborative learning for semantic segmentation. Firstly, a simple image translation method is introduced to align the pixel value distribution to reduce the gap between source domains and target domain to some extent. Then, to fully exploit the essential semantic information across source domains, we propose a collaborative learning method for domain adaptation without seeing any data from target domain. In addition, similar to the setting of unsupervised domain adaptation, unlabeled target domain data is leveraged to further improve the performance of domain adaptation. This is achieved by additionally constraining the outputs of multiple adaptation models with pseudo labels online generated by an ensembled model. Extensive experiments and ablation studies are conducted on the widely-used domain adaptation benchmark datasets in semantic segmentation. Our proposed method achieves 59.0\% mIoU on the validation set of Cityscapes by training on the labeled Synscapes and GTA5 datasets and unlabeled training set of Cityscapes. It significantly outperforms all previous state-of-the-arts single-source and multi-source unsupervised domain adaptation methods.


翻译:多源未经监督的域适应~ (MSDA) 旨在将多标签源域培训的模型调整到一个没有标签的目标域。 在本文件中,我们提议了一个基于语义分化合作学习的新颖的多源域适应框架。 首先,引入了一个简单的图像翻译方法,以调整像素值分布,从而在某种程度上缩小源域和目标域之间的差距。 然后,为了充分利用源域间基本语义调整基准数据集,我们提议了一个在目标域间不见任何数据的情况下对域调整进行协作学习的方法。 此外,与设置未监督域适应类似,利用无标签目标域数据来进一步提高域适应的性能。实现这一点的办法是,通过对标签的同步和GTA5型域域别进行的培训,进一步限制多种适应模型的输出,并使用由混合模型生成的在线假标签。 在语系分化中,对广泛使用的域域适应基准数据集进行了广泛的试验和对比研究。 我们提出的方法通过对未标签的同步和GTA- Supread State State State Strodustrations, 之前的数据集。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员