Smart contracts on the blockchain offer decentralized financial services but often lack robust security measures, resulting in significant economic losses. Although substantial research has focused on identifying vulnerabilities, a notable gap remains in evaluating the malicious intent behind their development. To address this, we introduce \textsc{SmartIntentNN} (Smart Contract Intent Neural Network), a deep learning-based tool designed to automate the detection of developers' intent in smart contracts. Our approach integrates a Universal Sentence Encoder for contextual representation of smart contract code, employs a K-means clustering algorithm to highlight intent-related code features, and utilizes a bidirectional LSTM-based multi-label classification network to predict ten distinct types of high-risk intent. Evaluations on a dataset of 10,000 smart contracts demonstrate that \textsc{SmartIntentNN} surpasses all baselines, achieving an F1-score of up to 0.8633. A demo video is available at \url{https://youtu.be/otT0fDYjwK8}.
翻译:暂无翻译