Preconditioning is the most widely used and effective way for treating ill-conditioned linear systems in the context of classical iterative linear system solvers. We introduce a quantum primitive called fast inversion, which can be used as a preconditioner for solving quantum linear systems. The key idea of fast inversion is to directly block-encode a matrix inverse through a quantum circuit implementing the inversion of eigenvalues via classical arithmetics. We demonstrate the application of preconditioned linear system solvers for computing single-particle Green's functions of quantum many-body systems, which are widely used in quantum physics, chemistry, and materials science. We analyze the complexities in three scenarios: the Hubbard model, the quantum many-body Hamiltonian in the planewave-dual basis, and the Schwinger model. We also provide a method for performing Green's function calculation in second quantization within a fixed particle manifold and note that this approach may be valuable for simulation more broadly. Besides solving linear systems, fast inversion also allows us to develop fast algorithms for computing matrix functions, such as the efficient preparation of Gibbs states. We introduce two efficient approaches for such a task, based on the contour integral formulation and the inverse transform respectively.


翻译:在古典迭代线性系统求解器中,先发制人是治疗条件不良线性系统的最广泛和最有效的方法。我们引入了称为快速反转的量子原始法,可以用作解决量子线性系统的前提条件。快速反转的关键思想是通过量子电路直接成块编码矩阵,通过古典算术对电子元值进行反转。我们展示了在计算单粒子Green的量子多体系统功能时使用先决条件线性系统求解器的应用,这些功能在量子物理学、化学和材料科学中广泛使用。我们分析了三种情景的复杂性:赫巴德模型、平浪-双基量体汉密尔顿仪和施温格模型。我们还提供了一个在固定粒子元体中进行二次二次四分解计算绿色函数的方法。我们注意到,这一方法对于更广义的模拟可能很有价值。除了解决线性系统外,快速反向也使我们能够开发计算矩阵功能的快速算法,例如吉布斯状态的有效准备。我们用两种高效的方法分别对等综合任务进行转化。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
7+阅读 · 2017年7月11日
Marginalised Gaussian Processes with Nested Sampling
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员