Glioblastomas are the most aggressive fast-growing primary brain cancer which originate in the glial cells of the brain. Accurate identification of the malignant brain tumor and its sub-regions is still one of the most challenging problems in medical image segmentation. The Brain Tumor Segmentation Challenge (BraTS) has been a popular benchmark for automatic brain glioblastomas segmentation algorithms since its initiation. In this year's challenge, BraTS 2021 provides the largest multi-parametric (mpMRI) dataset of 2,000 pre-operative patients. In this paper, we propose a new aggregation of two deep learning frameworks namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI. Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions on the BraTS 2021 validation set, individually. These Experimental findings provide evidence that it can be readily applied clinically and thereby aiding in the brain cancer prognosis, therapy planning, and therapy response monitoring.
翻译:Glioblastomas(BRATS)是脑中显性最强、增长最快的初级脑癌,起源于大脑的显微细胞。精确地识别恶性脑肿瘤及其子区域仍然是医学图像分割方面最具挑战性的问题之一。脑肿瘤分解挑战(BRATS)自启动以来一直是大脑自动显微瘤分解算法的流行基准。在今年的挑战中,BRATS 2021 提供了2,000个手术前病人的最大多参数数据集。在本文件中,我们提出了两个深层学习框架的新组合,即DeepSeg 和 nnU-Net,用于在手术前静脉瘤分解中自动识别。我们的共同方法获得了92.0、87.33、84.10和Hausdorff距离3.81、8.91和16.02的类似分数。用于强化肿瘤、肿瘤核心和整个肿瘤区域在BRATS 2021 校准系统上的数据。这些实验发现提供了证据,可以轻易地进行临床监测,并据此协助进行癌症治疗。