Brain tumors analysis is important in timely diagnosis and effective treatment to cure patients. Tumor analysis is challenging because of tumor morphology like size, location, texture, and heteromorphic appearance in the medical images. In this regard, a novel two-phase deep learning-based framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs). In the first phase, a novel deep boosted features and ensemble classifiers (DBF-EC) scheme is proposed to detect tumor MRI images from healthy individuals effectively. The deep boosted feature space is achieved through the customized and well-performing deep convolutional neural networks (CNNs), and consequently, fed into the ensemble of machine learning (ML) classifiers. While in the second phase, a new hybrid features fusion-based brain tumor classification approach is proposed, comprised of dynamic-static feature and ML classifier to categorize different tumor types. The dynamic features are extracted from the proposed BRAIN-RENet CNN, which carefully learns heteromorphic and inconsistent behavior of various tumors, while the static features are extracted using HOG. The effectiveness of the proposed two-phase brain tumor analysis framework is validated on two standard benchmark datasets; collected from Kaggle and Figshare containing different types of tumor, including glioma, meningioma, pituitary, and normal images. Experimental results proved that the proposed DBF-EC detection scheme outperforms and achieved accuracy (99.56%), precision (0.9991), recall (0.9899), F1-Score (0.9945), MCC (0.9892), and AUC-PR (0.9990). While the classification scheme, the joint employment of the deep features fusion of proposed BRAIN-RENet and HOG features improves performance significantly in terms of recall (0.9913), precision (0.9906), F1-Score (0.9909), and accuracy (99.20%) on diverse datasets.


翻译:脑肿瘤分析对及时诊断和治疗病人的有效治疗十分重要。肿瘤分析具有挑战性,因为肿瘤形态学在医学图像中出现大小、位置、质地、外形外观等大小、体型等肿瘤形态学,因此,很难进行深度分析。在这方面,提出了一个新的两阶段深学习框架,以探测和分类磁共振图像中的脑肿瘤。在第一阶段,提出了一个新的深层增强功能和混合分类器(DBF-EC)计划,以有效检测健康个体的肿瘤MRI图像。深度增强功能空间是通过定制和运行良好的深层神经神经精确网络(CNN)实现的。 深度推进空间是通过定制和运行良好的深度变异性神经神经神经系统(NCN),因此,输入到机器学习(ML)分类的集合。虽然在第二阶段,提出了新的混合特性,基于脑共振荡的肿瘤分类方法,包括动态-静态特征和对不同肿瘤类型进行分类(BREA-RENet NCR),拟议中的动态特征来自BRAIN-RIM IM, 深入了解各种肿瘤的变形和不均态性行为,同时,同时, IMS-IRC-IL-IL-I-I-I-IL-I-I-I-IL-D-ID-IL-L-I-I-I-I-I-S 和S-S-S-S-S-S-S-S-S-IG-S-S-S-S-S-S-S-S-S-S-S-ID-ID-ID-ID-ID-ID-ID-ID-S-S-ID-S-S-S-S-S-S-I-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-ID-ID-ID-ID-ID-ID-ID-S-ID-S-S-S-ID-S-I-I-I-I-ID-S-S-S-S-ID-ID-I-I-I-I-I-I-I-I-I-I

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Challenges for Open-domain Targeted Sentiment Analysis
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员