In this work, we initiate the study of \emph{smoothed analysis} of population protocols. We consider a population protocol model where an adaptive adversary dictates the interactions between agents, but with probability $p$ every such interaction may change into an interaction between two agents chosen uniformly at random. That is, $p$-fraction of the interactions are random, while $(1-p)$-fraction are adversarial. The aim of our model is to bridge the gap between a uniformly random scheduler (which is too idealistic) and an adversarial scheduler (which is too strict). We focus on the fundamental problem of leader election in population protocols. We show that, for a population of size $n$, the leader election problem can be solved in $O(p^{-2}n \log^3 n)$ steps with high probability, using $O((\log^2 n) \cdot (\log (n/p)))$ states per agent, for \emph{all} values of $p\leq 1$. Although our result does not match the best known running time of $O(n \log n)$ for the uniformly random scheduler ($p=1$), we are able to present a \emph{smooth transition} between a running time of $O(n \cdot \mathrm{polylog} n)$ for $p=1$ and an infinite running time for the adversarial scheduler ($p=0$), where the problem cannot be solved. The key technical contribution of our work is a novel \emph{phase clock} algorithm for our model. This is a key primitive for much-studied fundamental population protocol algorithms (leader election, majority), and we believe it is of independent interest.
翻译:在此工作中, 我们开始对人口协议进行 emph{ smoothed 分析} 。 我们考虑一个人口协议模型, 由适应性对手决定代理方之间的相互作用, 但每次这种互动都有可能以美元改变为两个代理方之间的相互作用。 也就是说, 美元对互动的折射是随机的, 而美元( 1- p) 的折射是对立的。 我们模型的目的是缩小单一随机调度器( 理想性过强) 和对抗性调度器( 过于严格 ) 之间的差距。 我们在人口协议中集中关注领导选举的根本问题。 我们显示, 对于规模为美元的人来说, 领导选举问题可以用美元( p% 2} nlog3 n) 的高概率来解决, 而美元( log (n/ p) 折射) 的折射线值( log (n/ p) 美元) 的每个代理方( 美元) 的汇率( emph{all} 和 美元( liverleq) 美元( 美元) 。 尽管我们的结果无法匹配目前所知道的正运行的时程时间 $1=美元( O=xxx) 的日程。