We propose two policy gradient algorithms for solving the problem of control in an off-policy reinforcement learning (RL) context. Both algorithms incorporate a smoothed functional (SF) based gradient estimation scheme. The first algorithm is a straightforward combination of importance sampling-based off-policy evaluation with SF-based gradient estimation. The second algorithm, inspired by the stochastic variance-reduced gradient (SVRG) algorithm, incorporates variance reduction in the update iteration. For both algorithms, we derive non-asymptotic bounds that establish convergence to an approximate stationary point. From these results, we infer that the first algorithm converges at a rate that is comparable to the well-known REINFORCE algorithm in an off-policy RL context, while the second algorithm exhibits an improved rate of convergence.


翻译:我们建议采用两种政策梯度算法来解决政策外强化学习(RL)背景下的控制问题。两种算法都包含一种平滑的功能(SF)基梯度估计办法。第一种算法是基于抽样的重要非政策性评估与基于SF的梯度估计的简单组合。第二种算法受随机差异性降低梯度(SVRG)梯度(SVRG)算法的启发,在更新的迭代法中包括了差异减少。对于这两种算法,我们从中得出了非救济性界限,这些界限使得趋同到大致的固定点。根据这些结果,我们推断,第一种算法的趋同率与众所周知的REINFORCE在非政策性RL背景下的REINFORCE算法相当,而第二种算法的趋同率则有所改善。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员