We consider the properties of a specific distribution of mixed quantum states of arbitrary dimension that can be biased towards a specific mean purity. In particular, we analyze mixtures of Haar-random pure states with Dirichlet-distributed coefficients. We analytically derive the concentration parameters required to match the mean purity of the Bures and Hilbert--Schmidt distributions in any dimension. Numerical simulations suggest that this value recovers the Hilbert--Schmidt distribution exactly, offering an alternative and intuitive physical interpretation for ensembles of Hilbert--Schmidt-distributed random quantum states. We then demonstrate how substituting these Dirichlet-weighted Haar mixtures in place of the Bures and Hilbert--Schmidt distributions results in measurable performance advantages in machine-learning-based quantum state tomography systems and Bayesian quantum state reconstruction. Finally, we experimentally characterize the distribution of quantum states generated by both a cloud-accessed IBM quantum computer and an in-house source of polarization-entangled photons. In each case, our method can more closely match the underlying distribution than either Bures or Hilbert--Schmidt distributed states for various experimental conditions.
翻译:我们考虑的是任意尺寸混合量度状态的具体分布特性,这种分布可以偏向于特定的平均纯度。特别是,我们用Drichlet和Hilbert-Schmidt的系数来分析Harar-random纯度国家与Drichlet和Hilbert-Schmidt分配系数的混合物。我们分析得出与Bures和Hilbert-Hilbert-Schmidt在任何维度分布平均纯度相匹配所需的浓度参数。数字模拟表明,这一数值完全恢复了Hilbert-Schmidt的分布,为Hilbert-Schmidt随机分布量子国家的组合提供了替代和直观的物理解释。我们随后展示了这些取代Drichlet-加权卤子混合物的混合物如何取代Bures和Hilbert-Schmidt的分布,从而在机器学习制量子摄影系统和Bayesian量子州重建中取得可衡量的性能优势。最后,我们实验性地描述出一种云获取的IBM 量子计算机和内部两极分化相相相相的光源源源。在每种情况下,我们的方法可以更接近于基的实验性分布。比基质或基质或基质的分布。