The conforming Scott-Vogelius pair for the stationary Stokes equation in 2D is a popular finite element which is inf-sup stable for any fixed regular triangulation. However, the inf-sup constant deteriorates if the "singular distance" (measured by some geometric mesh quantity $\Theta_{\min}>0$) of the finite element mesh to certain "singular" mesh configurations is small. In this paper we present a modification of the classical Scott-Vogelius element of arbitrary polynomial order $k\geq4$ for the velocity where a constraint on the pressure space is imposed if locally the singular distance is smaller than some control parameter $\eta>0$. We establish a lower bound on the inf-sup constant in terms of $\Theta_{\mathrm{\min}}+\eta>0$ independent of the maximal mesh width and the polynomial degree that does not deteriorate for small $\Theta_{\min} \ll 1$. The divergence of the discrete velocity is at most of size $\mathcal{O}(\eta)$ and very small in practical examples. In the limit $\eta\rightarrow0$ we recover and improve estimates for the classical Scott-Vogelius Stokes element.
翻译:2D 中固定式 Stokes 等式符合 Scott-Vogelius 配对符合 Scott-Vogelius 配对的 2D 是一个受欢迎的限定值元素, 对任何固定的常规三角方格来说, 它会自动稳定。 但是, 如果“ singal 距离” (用某些几何网格数量 $\ Theta ⁇ ⁇ min ⁇ ⁇ 0 美元衡量), 限制当地单数低于某些控制参数 $\eta> 0 美元, 则气泡常数会恶化。 我们根据一定的“ singing- mesh ” 网格网格和某些“ singal ” 网格配置来设定一个更低的框框。 本文中, 对任意的多调多边单调单调 $k\ geq4$ 在速度上会施加压力空间限制。 如果本地单调距离小于某些控制参数 $\eta> 0 。 我们为 exmata\ romax romatial imal imal imal ex ex expeal expeal acal ex ex ex expeal exp exm ex expal $.