This paper focuses on the analysis of conforming virtual element methods for general second-order linear elliptic problems with rough source terms and applies it to a Poisson inverse source problem with rough measurements. For the forward problem, when the source term belongs to $H^{-1}(\Omega)$, the right-hand side for the discrete approximation defined through polynomial projections is not meaningful even for standard conforming virtual element method. The modified discrete scheme in this paper introduces a novel companion operator in the context of conforming virtual element method and allows data in $H^{-1}(\Omega)$. This paper has {\it three} main contributions. The {\it first} contribution is the design of a conforming companion operator $J$ from the {\it conforming virtual element space} to the Sobolev space $V:=H^1_0(\Omega)$, a modified virtual element scheme, and the \textit{a priori} error estimate for the Poisson problem in the best-approximation form without data oscillations. The {\it second} contribution is the extension of the \textit{a priori} analysis to general second-order elliptic problems with source term in $V^*$. The {\it third} contribution is an application of the companion operator in a Poisson inverse source problem when the measurements belong to $V^*$. The Tikhonov's regularization technique regularizes the ill-posed inverse problem, and the conforming virtual element method approximates the regularized problem given a finite measurement data. The inverse problem is also discretised using the conforming virtual element method and error estimates are established. Numerical tests on different polygonal meshes for general second-order problems, and for a Poisson inverse source problem with finite measurement data verify the theoretical results.
翻译:本文的重点是分析普通二阶直线椭圆形直径问题符合虚拟元素的方法, 且使用粗糙源值术语, 并应用于 Poisson 逆源值问题 。 对于前期问题, 当源词属于$H ⁇ -1}(\ Omega)$时, 通过多式预测定义的离散近点右手侧即使对于标准的符合虚拟元素方法也不有意义 。 修改后的离散方案在符合虚拟元素方法的背景下引入了一个新的同伴操作器, 并允许以$H ⁇ -1}(\ Omega) 来提供数据 $( Omega) 。 此纸张有 3} 常规正序 的正序值估算值估算 。 在普通空间 VV:=H_1_0 (\\\\\ omega) $( Omega) 的右侧侧侧侧侧侧侧侧侧侧端操作器操作器操作器设计 。 在普通源值测试中, 普通源值的右侧端数据测试中, 的直端端值解解是 。 在普通源号内部解号 度 度 解算法中, 质解解解的第二个解号 的扩展解号 的扩展解号 问题是 。