Many approximate Bayesian inference methods assume a particular parametric form for approximating the posterior distribution. A multivariate Gaussian distribution provides a convenient density for such approaches; examples include the Laplace, penalized quasi-likelihood, Gaussian variational, and expectation propagation methods. Unfortunately, these all ignore the potential skewness of the posterior distribution. We propose a modification that accounts for skewness, where key statistics of the posterior distribution are matched instead to a multivariate skew-normal distribution. A combination of simulation studies and benchmarking were conducted to compare the performance of this skew-normal matching method (both as a standalone approximation and as a post-hoc skewness adjustment) with existing Gaussian and skewed approximations. We show empirically that for small and moderate dimensional cases, skew-normal matching can be much more accurate than these other approaches. For post-hoc skewness adjustments, this comes at very little cost in additional computational time.
翻译:许多近似贝叶斯的推论方法假定了近似后向分布的某种特定参数形式。 多变量高萨分布为这些方法提供了方便的密度;例子包括Laplace、惩罚的准相似性、高萨变异性和预期传播方法。 不幸的是,所有这些方法都忽略了后向分布的潜在偏差。 我们提议修改对偏差的考虑,即后向分布的关键统计数据与多变量的斜差分布相匹配,而不是与多变量的斜差-正常分布相匹配。 进行了模拟研究和基准比较,以便将这种斜差-正常匹配方法的性能(作为独立近似法和后偏差调整法)与现有的高差和偏差近差方法进行比较。 我们从经验上表明,对于中小的维情况,斜差-正常匹配可能比其他方法更准确得多。 对于后偏差的调整,这种模拟研究和基准的结合在额外的计算时间成本很小。