A mega-constellation of low-altitude earth orbit (LEO) satellites (SATs) are envisaged to provide a global coverage SAT network in beyond fifth-generation (5G) cellular systems. LEO SAT networks exhibit extremely long link distances of many users under time-varying SAT network topology. This makes existing multiple access protocols, such as random access channel (RACH) based cellular protocol designed for fixed terrestrial network topology, ill-suited. To overcome this issue, in this paper, we propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH). In stark contrast to existing model-based and standardized protocols, eRACH is a model-free approach that emerges through interaction with the non-stationary network environment, using multi-agent deep reinforcement learning (MADRL). Furthermore, by exploiting known SAT orbiting patterns, eRACH does not require central coordination or additional communication across users, while training convergence is stabilized through the regular orbiting patterns. Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput with around two times lower average access delay while achieving 0.989 Jain's fairness index.
翻译:低高度地球轨道(LEO)卫星(SAT)的巨型星座设想将低高度地球轨道卫星(LEO)卫星(SATs)作为全球覆盖的卫星网络在第五代(5G)蜂窝系统之外提供一个全球覆盖的卫星网络。低地轨道卫星网络显示许多用户在时间变化的SAT网络地形学下有着极长的联系距离,这使得现有的多种访问协议,例如为固定地面网络地形学设计的随机访问通道(RACH)蜂窝议定书,不合适。为了解决这一问题,我们在本文件中提议为低地卫星网络网络网络提供一个新的无赠与随机访问协议(eRACH)。与现有的基于模型的标准化协议形成鲜明对比的是,ERACH是一种无模式的办法,它通过与非静止网络环境的互动,利用多剂深度强化学习(MADRL)产生多种访问协议。此外,通过利用已知的卫星轨道模式,ERCH不需要中央协调或用户之间的额外通信,而培训的趋同则通过正常轨道模式稳定下来。与RACH相比,我们从各种模拟中显示,我们提议的eRACH在达到平均速度率为54.6%左右的平均延迟,同时通过高级网络达0.89。