Deep learning methods have gained popularity in recent years through the media and the relative ease of implementation through open source packages such as Keras. We investigate the applicability of popular recurrent neural networks in forecasting call center volumes at a large financial services company. These series are highly complex with seasonal patterns - between hours of the day, day of the week, and time of the year - in addition to autocorrelation between individual observations. Though we investigate the financial services industry, the recommendations for modeling cyclical nonlinear behavior generalize across all sectors. We explore the optimization of parameter settings and convergence criteria for Elman (simple), Long Short-Term Memory (LTSM), and Gated Recurrent Unit (GRU) RNNs from a practical point of view. A designed experiment using actual call center data across many different "skills" (income call streams) compares performance measured by validation error rates of the best observed RNN configurations against other modern and classical forecasting techniques. We summarize the utility of and considerations required for using deep learning methods in forecasting.
翻译:近年来,通过媒体和通过开源软件包(如Keras)实施相对容易的方式,深层学习方法越来越受欢迎。我们调查流行的经常性神经网络在大型金融服务公司预测呼叫中心数量时的适用性。这些系列与季节性模式非常复杂――从一天的小时、一周的一天和一年的时间之间――除了个人观察之间的自动联系之外。虽然我们调查了金融服务行业,但关于模拟周期性非线性行为的建议遍及所有部门。我们探讨了埃尔曼(简单)、长期短期记忆(LTSM)和Ged 经常单元(GRU)的参数设置和趋同标准的优化问题。我们从实际角度出发,利用许多不同的“技能”(收入呼叫流)的实际呼叫中心数据,将观测到的最佳RNN配置与其他现代和古典预报技术的验证误差率进行比较。我们总结了使用深入的预测方法所需的实用性和考虑因素。