Subseasonal forecasting $\unicode{x2013}$ predicting temperature and precipitation 2 to 6 weeks ahead $\unicode{x2013}$ is critical for effective water allocation, wildfire management, and drought and flood mitigation. Recent international research efforts have advanced the subseasonal capabilities of operational dynamical models, yet temperature and precipitation prediction skills remains poor, partly due to stubborn errors in representing atmospheric dynamics and physics inside dynamical models. To counter these errors, we introduce an adaptive bias correction (ABC) method that combines state-of-the-art dynamical forecasts with observations using machine learning. When applied to the leading subseasonal model from the European Centre for Medium-Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by 60-90% (over baseline skills of 0.18-0.25) and precipitation forecasting skill by 40-69% (over baseline skills of 0.11-0.15) in the contiguous U.S. We couple these performance improvements with a practical workflow, based on Cohort Shapley, for explaining ABC skill gains and identifying higher-skill windows of opportunity based on specific climate conditions.
翻译:亚季预报 $\ unicode{x2013}$ 预测温度和降水 $ 2-6周前 $\ uncode{x2013}$ 2-6周前预测温度和降水 $ uncode{x2013}$ 2-6 $ uncode{x2013} 对有效的水分配、野火管理、干旱和洪水缓解至关重要。最近的国际研究努力提高了运行动态模型的亚季预报能力,但温度和降水预测技能仍然很差,部分原因是在动态模型中代表大气动态和物理的顽固错误。 为了消除这些错误,我们采用了适应性偏差纠正方法,将最新动态预测与使用机器学习的观测结合起来。当应用到欧洲中期天气预报中心(ECMWF)的主要亚季模型时,ABC提高了60-90%的温度预报技能(超过0.18-0.25的基线技能)和40-69%的降水预报技能(超过0.11-0.15的基线技能)。 在毗连的美国,我们将这些绩效改进与实用工作流程结合起来,以Choort Shaty为基础,解释ABC 技能收益和根据特定气候条件确定更高的机会窗口。</s>