For many applications, it is convenient to have good upper bounds for the norm of the inverse of a given matrix. In this paper, we obtain such bounds when A is a Nekrasov matrix, by means of a scaling matrix transforming A into a strictly diagonally dominant matrix. Numerical examples and comparisons with other bounds are included. The scaling matrices are also used to derive new error bounds for the linear complementarity problems when the involved matrix is a Nekrasov matrix. These error bounds can improve considerably other previous bounds.
翻译:暂无翻译