Anytime motion planners are widely used in robotics. However, the relationship between their solution quality and computation time is not well understood, and thus, determining when to quit planning and start execution is unclear. In this paper, we address the problem of deciding when to stop deliberation under bounded computational capacity, so called meta-reasoning, for anytime motion planning. We propose data-driven learning methods, model-based and model-free meta-reasoning, that are applicable to different environment distributions and agnostic to the choice of anytime motion planners. As a part of the framework, we design a convolutional neural network-based optimal solution predictor that predicts the optimal path length from a given 2D workspace image. We empirically evaluate the performance of the proposed methods in simulation in comparison with baselines.
翻译:任何时间运动规划者都广泛用于机器人。然而,他们的解决方案质量和计算时间之间的关系没有很好地理解,因此,决定何时停止规划和开始执行还不清楚。在本文件中,我们处理的是决定何时停止在封闭计算能力下(即所谓“元理由”)进行审议的问题,以便随时进行运动规划。我们提出了数据驱动的学习方法,即基于模型和不含模型的元理由方法,适用于不同的环境分布,并适用于随时选择运动规划者。作为框架的一部分,我们设计了一个以神经神经网络为基础的最佳解决方案预测器,预测从给定的2D工作空间图像中得出的最佳路径长度。我们用经验评估模拟方法与基线相比的绩效。