Reinforcement learning in large-scale environments is challenging due to the many possible actions that can be taken in specific situations. We have previously developed a means of constraining, and hence speeding up, the search process through the use of motion primitives; motion primitives are sequences of pre-specified actions taken across a state series. As a byproduct of this work, we have found that if the motion primitives' motions and actions are labeled, then the search can be sped up further. Since motion primitives may initially lack such details, we propose a theoretically viewpoint-insensitive and speed-insensitive means of automatically annotating the underlying motions and actions. We do this through a differential-geometric, spatio-temporal kinematics descriptor, which analyzes how the poses of entities in two motion sequences change over time. We use this descriptor in conjunction with a weighted-nearest-neighbor classifier to label the primitives using a limited set of training examples. In our experiments, we achieve high motion and action annotation rates for human-action-derived primitives with as few as one training sample. We also demonstrate that reinforcement learning using accurately labeled trajectories leads to high-performing policies more quickly than standard reinforcement learning techniques. This is partly because motion primitives encode prior domain knowledge and preempt the need to re-discover that knowledge during training. It is also because agents can leverage the labels to systematically ignore action classes that do not facilitate task objectives, thereby reducing the action space.


翻译:由于在特定情况下可以采取许多可能的行动,大规模环境中的强化学习具有挑战性,因为在大规模环境中的强化学习之所以具有挑战性,是因为在特定情况下可以采取许多可能的行动。我们以前已经开发了一种限制,从而通过使用运动原始体来加快搜索过程的手段;运动原始体是一系列州级预先指定的行动的序列。作为这项工作的副产品,我们发现,如果运动原始体的动作和行动被贴上标签,那么搜索就可以进一步加快。由于运动原始体最初可能缺乏这样的细节,我们提议了一种理论上的对视觉不敏感和速度不敏感的方法,自动地说明基本动作和行动。我们这样做的方法是通过差异地测量、阵列运动即时运动的运动描述,从而分析两个运动序列中实体的构成如何随时间变化。我们发现,如果将这个描述与加权原始体的动作和行动标签加在一起,则可以用有限的培训范例来标记原始体的原始体型,我们提出的运动和行动说明率很高,而人类原始体运动运动和动作说明率则低为少数,因此,我们通过一种训练方法来快速地进行,因为我们学习前的校准的校准,因为先变的模的校程的校程的校准的校准的校准是学习,因为我们的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正。

0
下载
关闭预览

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
40+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
3+阅读 · 2018年10月5日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员