We introduce a high resolution, 3D-consistent image and shape generation technique which we call StyleSDF. Our method is trained on single-view RGB data only, and stands on the shoulders of StyleGAN2 for image generation, while solving two main challenges in 3D-aware GANs: 1) high-resolution, view-consistent generation of the RGB images, and 2) detailed 3D shape. We achieve this by merging a SDF-based 3D representation with a style-based 2D generator. Our 3D implicit network renders low-resolution feature maps, from which the style-based network generates view-consistent, 1024x1024 images. Notably, our SDF-based 3D modeling defines detailed 3D surfaces, leading to consistent volume rendering. Our method shows higher quality results compared to state of the art in terms of visual and geometric quality.


翻译:我们引入了一种高分辨率、3D兼容图像和形状生成技术,我们称之为StyleSDF。我们的方法只接受单视 RGB 数据培训,并站在StyleGAN2的肩上进行图像生成,同时解决3D-aware GANs的两个主要挑战:(1)高分辨率、视觉兼容生成 RGB 图像,和(2) 详细的 3D 形状。我们通过将基于 SDF 的3D 代表与基于风格的 2D 生成器合并来实现这一点。我们的 3D 隐含网络提供了低分辨率地貌图,基于样式的网络从中生成了视图兼容性, 1024x1024 图像。值得注意的是,基于 StyGAN2 的3D 模型定义了详细的 3D 表面, 导致一致的体积转换。我们的方法显示质量高于视觉和几何质量的艺术状态。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Real-Time High-Resolution Background Matting
Arxiv
4+阅读 · 2020年12月14日
Using Scene Graph Context to Improve Image Generation
VIP会员
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员