This paper proposes an algorithm called Forward Composition Propagation (FCP) to explain the predictions of feed-forward neural networks operating on structured classification problems. In the proposed FCP algorithm, each neuron is described by a composition vector indicating the role of each problem feature in that neuron. Composition vectors are initialized using a given input instance and subsequently propagated through the whole network until we reach the output layer. It is worth mentioning that the algorithm is executed once the network's training network is done. The sign of each composition value indicates whether the corresponding feature excites or inhibits the neuron, while the absolute value quantifies such an impact. Aiming to illustrate the FCP algorithm, we develop a case study concerning bias detection in a fairness problem in which the ground truth is known. The simulation results show that the composition values closely align with the expected behavior of protected features.
翻译:本文建议了一个名为“ 前进构成促进” 的算法, 以解释基于结构分类问题运行的饲料向神经网络的预测。 在拟议的 FCP 算法中, 每一个神经元都用组成矢量来描述, 指出神经元中每个问题特征的作用。 组成矢量使用给定输入实例进行初始化, 并随后在整个网络中传播, 直到我们到达输出层。 值得提及的是, 一旦网络的培训网络完成, 算法就会被执行。 每个组成值的标记显示相应的特征突变或抑制神经元, 而绝对值则量化了这种影响。 为了说明FCP 算法, 我们开发了一个案例研究, 说明在一个公正问题中发现偏差, 即地面真相是已知的。 模拟结果显示, 构成值与所保护特性的预期行为密切一致。