In this paper, we establish the foundations of a novel logical framework for the {\pi}-calculus, based on the deduction-as-computation paradigm. Following the standard proof-theoretic interpretation of logic programming, we represent processes as formulas, and we interpret proofs as computations. For this purpose, we define a cut-free sequent calculus for an extension of first-order multiplicative and additive linear logic. This extension includes a non-commutative and non-associative connective to faithfully model the prefix operator, and nominal quantifiers to represent name restriction. Finally, we design proof nets providing canonical representatives of derivations up to local rule permutations.
翻译:暂无翻译