Formation control (FC) of multi-agent plays a critical role in a wide variety of fields. In the absence of absolute positioning, agents in FC systems rely on relative position measurements with respect to their neighbors. In distributed filter design literature, relative observation models are comparatively unexplored, and in FC literature, uncertainty models are rarely considered. In this article, we aim to bridge the gap between these domains, by exploring distributed filters tailored for relative FC of swarms. We propose statistically robust data models for tracking relative positions of agents in a FC network, and subsequently propose optimal Kalman filters for both centralized and distributed scenarios. Our simulations highlight the benefits of these estimators, and we identify future research directions based on our proposed framework.
翻译:多试剂的形成控制(FC)在广泛的领域发挥着关键作用。在没有绝对定位的情况下,FC系统中的物剂依赖与其邻居相对位置的测量。在分布式过滤设计文献中,相对的观测模型相对没有探索,而在FC文献中,不确定性模型很少考虑。在本篇文章中,我们的目标是通过探索适合相对群落FC的分布式过滤器来缩小这些领域之间的差距。我们提出了统计上可靠的数据模型,用于跟踪FC网络中物剂相对位置,随后为集中式和分布式两种情景提出了最佳的卡尔曼过滤器。我们的模拟突出了这些估计器的好处,我们根据我们提议的框架确定了未来的研究方向。