Many important problems involving molecular property prediction from 3D structures have limited data, posing a generalization challenge for neural networks. In this paper, we describe a pre-training technique based on denoising that achieves a new state-of-the-art in molecular property prediction by utilizing large datasets of 3D molecular structures at equilibrium to learn meaningful representations for downstream tasks. Relying on the well-known link between denoising autoencoders and score-matching, we show that the denoising objective corresponds to learning a molecular force field -- arising from approximating the Boltzmann distribution with a mixture of Gaussians -- directly from equilibrium structures. Our experiments demonstrate that using this pre-training objective significantly improves performance on multiple benchmarks, achieving a new state-of-the-art on the majority of targets in the widely used QM9 dataset. Our analysis then provides practical insights into the effects of different factors -- dataset sizes, model size and architecture, and the choice of upstream and downstream datasets -- on pre-training.
翻译:从三维结构中进行分子财产预测所涉及的许多重要问题的数据有限,对神经网络构成普遍化的挑战。在本文中,我们描述了一种基于取消技术的培训前技术,通过利用均衡的三维分子结构的大型数据集来了解下游任务有意义的表现,在分子财产预测方面达到新的最新水平。我们借助于脱色自动编码器和得分匹配之间的众所周知的联系,我们显示,脱色目标相当于学习分子力量领域 -- -- 直接来自均衡结构,即波尔兹曼分布与高斯人混合的接近。我们的实验表明,使用这一培训前目标大大改进了多种基准的绩效,在广泛使用的QM9数据集中的大多数目标上达到了新的水平。我们的分析随后对不同因素 -- -- 数据集大小、模型大小和结构以及上游和下游数据集的选择 -- -- 对培训前的影响提供了实际的洞察。