We prove that, for any two polyhedral manifolds $\mathcal P, \mathcal Q$, there is a polyhedral manifold $\mathcal I$ such that $\mathcal P, \mathcal I$ share a common unfolding and $\mathcal I,\mathcal Q$ share a common unfolding. In other words, we can unfold $\mathcal P$, refold (glue) that unfolding into $\mathcal I$, unfold $\mathcal I$, and then refold into $\mathcal Q$. Furthermore, if $\mathcal P, \mathcal Q$ have no boundary and can be embedded in 3D (without self-intersection), then so does $\mathcal I$. These results generalize to $n$ given manifolds $\mathcal P_1, \mathcal P_2, \dots, \mathcal P_n$; they all have a common unfolding with the same intermediate manifold $\mathcal I$. Allowing more than two unfold/refold steps, we obtain stronger results for two special cases: for doubly covered convex planar polygons, we achieve that all intermediate polyhedra are planar; and for tree-shaped polycubes, we achieve that all intermediate polyhedra are tree-shaped polycubes.
翻译:我们证明,对于任意两个多面体流形 $\mathcal P, \mathcal Q$,存在一个多面体流形 $\mathcal I$,使得 $\mathcal P$ 与 $\mathcal I$ 共享一个公共展开,且 $\mathcal I$ 与 $\mathcal Q$ 共享一个公共展开。换言之,我们可以展开 $\mathcal P$,将该展开重折(粘合)为 $\mathcal I$,再展开 $\mathcal I$,然后重折为 $\mathcal Q$。此外,若 $\mathcal P, \mathcal Q$ 无边界且可嵌入三维空间(无自交),则 $\mathcal I$ 亦满足此性质。这些结果可推广至 $n$ 个给定流形 $\mathcal P_1, \mathcal P_2, \dots, \mathcal P_n$;它们均与同一中间流形 $\mathcal I$ 存在公共展开。若允许多次展开/重折步骤,我们在两种特殊情形下获得更强结论:对于双覆盖凸平面多边形,我们实现了所有中间多面体均为平面多边形;对于树状多立方体,我们实现了所有中间多面体均为树状多立方体。