In this paper, we derive variational formulas for the asymptotic exponents (i.e., convergence rates) of the concentration and isoperimetric functions in the product Polish probability space under certain mild assumptions. These formulas are expressed in terms of relative entropies (which are from information theory) and optimal transport cost functionals (which are from optimal transport theory). Hence, our results verify an intimate connection among information theory, optimal transport, and concentration of measure or isoperimetric inequalities. In the concentration regime, the corresponding variational formula is in fact a dimension-free bound in the sense that this bound is valid for any dimension. A cardinality bound for the alphabet of the auxiliary random variable in the expression of the asymptotic isoperimetric exponent is provided, which makes the expression computable by a finite-dimensional program for the finite alphabet case. We lastly apply our results to obtain an isoperimetric inequality in the classic isoperimetric setting, which is asymptotically sharp under certain conditions. The proofs in this paper are based on information-theoretic and optimal transport techniques.
翻译:暂无翻译