We consider a Bayesian estimator of sample size (BESS) and an application to oncology dose optimization clinical trials. BESS is built upon three pillars, Sample size, Evidence from observed data, and Confidence in posterior inference. It uses a simple logic of "given the evidence from data, a specific sample size can achieve a degree of confidence in the posterior inference." The key distinction between BESS and standard sample size estimation (SSE) is that SSE, typically based on Frequentist inference, specifies the true parameters values in its calculation while BESS assumes possible outcome from the observed data. As a result, the calibration of the sample size is not based on type I or type II error rates, but on posterior probabilities. We demonstrate that BESS leads to a more interpretable statement for investigators, and can easily accommodates prior information as well as sample size re-estimation. We explore its performance in comparison to the standard SSE and demonstrate its usage through a case study of oncology optimization trial. BESS can be applied to general hypothesis tests. An R tool is available at https://ccte.uchicago.edu/BESS.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arrows of Time for Large Language Models
Arxiv
0+阅读 · 2024年6月3日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
21+阅读 · 2023年7月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arrows of Time for Large Language Models
Arxiv
0+阅读 · 2024年6月3日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
21+阅读 · 2023年7月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员