Image frames obtained in darkness are special. Just multiplying by a constant doesn't restore the image. Shot noise, quantization effects and camera non-linearities mean that colors and relative light levels are estimated poorly. Current methods learn a mapping using real dark-bright image pairs. These are very hard to capture. A recent paper has shown that simulated data pairs produce real improvements in restoration, likely because huge volumes of simulated data are easy to obtain. In this paper, we show that respecting equivariance -- the color of a restored pixel should be the same, however the image is cropped -- produces real improvements over the state of the art for restoration. We show that a scale selection mechanism can be used to improve reconstructions. Finally, we show that our approach produces improvements on video restoration as well. Our methods are evaluated both quantitatively and qualitatively.
翻译:在黑暗中获取的图像框架是特殊的。 仅以常数乘法并不能恢复图像。 射击噪音、 量化效果和相机非线性意味着颜色和相对光度估计不好。 当前的方法使用真实的深黑图像配对来学习绘图。 这些很难捕捉。 最近一篇论文显示, 模拟数据配对在恢复方面产生真正的改善, 可能是因为大量模拟数据很容易获得。 在本文中, 我们显示尊重等同性 -- 恢复像素的颜色应该相同, 不管图像被刻成什么 -- 会对恢复的艺术状态产生真正的改善。 我们显示, 比例选择机制可以用来改善重建。 最后, 我们显示, 我们的方法可以改善视频恢复。 我们的方法在数量上和质量上都得到了评估 。