Recent multi-view multimedia applications struggle between high-resolution (HR) visual experience and storage or bandwidth constraints. Therefore, this paper proposes a Multi-View Image Super-Resolution (MVISR) task. It aims to increase the resolution of multi-view images captured from the same scene. One solution is to apply image or video super-resolution (SR) methods to reconstruct HR results from the low-resolution (LR) input view. However, these methods cannot handle large-angle transformations between views and leverage information in all multi-view images. To address these problems, we propose the MVSRnet, which uses geometry information to extract sharp details from all LR multi-view to support the SR of the LR input view. Specifically, the proposed Geometry-Aware Reference Synthesis module in MVSRnet uses geometry information and all multi-view LR images to synthesize pixel-aligned HR reference images. Then, the proposed Dynamic High-Frequency Search network fully exploits the high-frequency textural details in reference images for SR. Extensive experiments on several benchmarks show that our method significantly improves over the state-of-the-art approaches.
翻译:因此,本文件提出多视图像超分辨率(MVISR)任务,目的是提高从同一场景中捕获的多视图像的分辨率。一个解决办法是应用图像或视频超分辨率(SR)方法来重建低分辨率(LR)输入视图产生的HR结果。然而,这些方法无法处理所有多视图像中视图与存储或带宽限制信息之间的大角转换。为了解决这些问题,我们提议采用MVSRnet,利用地理测量信息从所有LR多视图中提取精细细节以支持LRF输入视图的SR。具体地说,MVSRnet中的拟议几何测量-软件参考合成模块使用几何学信息以及所有多视LR图像来合成像素调整的HR参考图像。然后,拟议的动态高频搜索网络充分利用了SR参考图像中的高频质谱细节。关于若干基准的广泛实验显示,我们的方法大大改进了州-艺术方法。