We explore various Bayesian approaches to estimate partial Gaussian graphical models. Our hierarchical structures enable to deal with single-output as well as multiple-output linear regressions, in small or high dimension, enforcing either no sparsity, sparsity, group sparsity or even sparse-group sparsity for a bi-level selection through partial correlations (direct links) between predictors and responses, thanks to spike-and-slab priors corresponding to each setting. Adaptative and global shrinkages are also incorporated in the Bayesian modeling of the direct links. An existing result for model selection consistency is reformulated to stick to our sparse and group-sparse settings, providing a theoretical guarantee under some technical assumptions. Gibbs samplers are developed and a simulation study shows the efficiency of our models which give very competitive results, especially in terms of support recovery. To conclude, a real dataset is investigated.


翻译:我们探索了各种贝叶斯式的方法来估计部分高斯图形模型。我们的等级结构能够处理单输出和多输出线性回归,在小维或高维层面,通过预测器和反应之间的部分关联(直接联系),通过预测器和反应之间的部分关联(直接联系),执行双层选择。适应性和全球缩缩缩也被纳入了贝叶斯式直接链接模型中。模型选择一致性的现有结果被重拟,以粘合我们稀少和群体偏差的设置,在某些技术假设下提供理论保证。Gibbs取样员正在开发,模拟研究显示了我们模型的效率,这些模型提供了非常有竞争力的结果,特别是在支持回收方面。最后,对真实的数据集进行了调查。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月14日
Inference of Multiscale Gaussian Graphical Model
Arxiv
0+阅读 · 2022年2月11日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员