When evaluating and comparing models using leave-one-out cross-validation (LOO-CV), the uncertainty of the estimate is typically assessed using the variance of the sampling distribution. Considering the uncertainty is important, as the variability of the estimate can be high in some cases. An important result by Bengio and Grandvalet (2004) states that no general unbiased variance estimator can be constructed, that would apply for any utility or loss measure and any model. We show that it is possible to construct an unbiased estimator considering a specific predictive performance measure and model. We demonstrate an unbiased sampling distribution variance estimator for the Bayesian normal model with fixed model variance using the expected log pointwise predictive density (elpd) utility score. This example demonstrates that it is possible to obtain improved, problem-specific, unbiased estimators for assessing the uncertainty in LOO-CV estimation.
翻译:在评估和比较使用一次性休假交叉验证(LOO-CV)的模型时,通常使用抽样分布的差异来评估估计数的不确定性,考虑到不确定性很重要,因为在某些情况下,估计数的可变性可能很大,Bengio和Grandvalet(2004年)的重要结果表明,不能建造通用的无偏见差异估计仪,这种估计仪将适用于任何效用或损失计量和任何模型。我们表明,考虑到具体的预测性能尺度和模型,可以建立一个公正的估计器。我们用预期的逻辑预测密度(elpd)功用分,为具有固定模型差异的巴伊西亚正常模型展示一个公正的抽样分布估计器。这个例子表明,在评估LOO-CV估计的不确定性时,有可能获得改进的、针对具体问题的、公正的估计器。