Within the framework of parameter dependent PDEs, we develop a constructive approach based on Deep Neural Networks for the efficient approximation of the parameter-to-solution map. The research is motivated by the limitations and drawbacks of state-of-the-art algorithms, such as the Reduced Basis method, when addressing problems that show a slow decay in the Kolmogorov n-width. Our work is based on the use of deep autoencoders, which we employ for encoding and decoding a high fidelity approximation of the solution manifold. To provide guidelines for the design of deep autoencoders, we consider a nonlinear version of the Kolmogorov n-width over which we base the concept of a minimal latent dimension. We show that the latter is intimately related to the topological properties of the solution manifold, and we provide theoretical results with particular emphasis on second order elliptic PDEs, characterizing the minimal dimension and the approximation errors of the proposed approach. The theory presented is further supported by numerical experiments, where we compare the proposed approach with classical POD-Galerkin reduced order models. In particular, we consider parametrized advection-diffusion PDEs, and we test the methodology in the presence of strong transport fields, singular terms and stochastic coefficients.
翻译:在参数依赖性 PDE 框架内,我们以深神经网络为基础,为有效接近参数到溶解的地图制定了一种建设性的方法。研究的动机是,在解决科尔莫戈洛夫 n-width 缓慢衰减的问题时,如“降低基础方法”等最先进的算法的局限性和缺点。我们的工作以使用深自动编码器为基础,用于编码和解码解决方案的高度忠诚近似值。为设计深自动编码器提供指南,我们考虑 Kolmogorov n-width的非线性版本,作为我们最小潜在维度概念的基础。我们表明,后者与解决方案多维度的表性特性密切相关,我们提供理论结果,特别强调第二顺序的椭圆形PDE,确定拟议方法的最小维度和近似误差。我们提出的理论还得到了数字实验的进一步支持,我们将拟议方法与古典POD-Galkin n-with 维度标准模型进行对比。我们特别考虑的是,我们将模型和超强的递化模型进行对比。