In this paper, we study an online sampling problem of the Wiener process. The goal is to minimize the mean squared error (MSE) of the remote estimator under a sampling frequency constraint when the transmission delay distribution is unknown. The sampling problem is reformulated into an optional stopping problem, and we propose an online sampling algorithm that can adaptively learn the optimal stopping threshold through stochastic approximation. We prove that the cumulative MSE regret grows with rate $\mathcal{O}(\ln k)$, where $k$ is the number of samples. Through Le Cam's two point method, we show that the worst-case cumulative MSE regret of any online sampling algorithm is lower bounded by $\Omega(\ln k)$. Hence, the proposed online sampling algorithm is minimax order-optimal. Finally, we validate the performance of the proposed algorithm via numerical simulations.
翻译:在本文中, 我们研究Wiener过程的在线抽样问题。 目标是在传输延迟分布未知的情况下, 在取样频率限制下, 将远程估计器的平均正方差( MSE) 最小化。 取样问题被重新定位为可选的停止问题, 我们提出一个在线抽样算法, 通过随机近似, 可以适应性地学习最佳停止阈值。 我们证明累积的MSE 遗憾随着 $\ mathcal{ O}( $n k) 的汇率增长而增加, 美元是样本的数量。 我们通过 Le Cam 的两点方法, 显示任何在线取样算法的最坏的累积MSE 遗憾被 $\ Omega ( nk) 所下限 。 因此, 提议的在线抽样算法是微量成像值优化的。 最后, 我们通过数字模拟验证了拟议算法的表现 。