Simulation models of complex dynamics in the natural and social sciences commonly lack a tractable likelihood function, rendering traditional likelihood-based statistical inference impossible. Recent advances in machine learning have introduced novel algorithms for estimating otherwise intractable likelihood functions using a likelihood ratio trick based on binary classifiers. Consequently, efficient likelihood approximations can be obtained whenever good probabilistic classifiers can be constructed. We propose a kernel classifier for sequential data using path signatures based on the recently introduced signature kernel. We demonstrate that the representative power of signatures yields a highly performant classifier, even in the crucially important case where sample numbers are low. In such scenarios, our approach can outperform sophisticated neural networks for common posterior inference tasks.
翻译:自然科学和社会科学中复杂动态模拟模型通常缺乏可移动的可能性功能,使得传统的基于可能性的统计推论不可能实现。最近机器学习的进展引进了新算法,利用基于二进制分类法的概率比技巧来估计本难用的可能性函数。因此,只要能够建立良好的概率分类法,就可以获得有效的可能性近似值。我们建议使用基于最近引进的签字内核的路径签名来对顺序数据进行内核分类。我们证明,即使在抽样数字低的极其重要的情况下,签字的代表性能产生高性能分类器。在这种情况下,我们的方法可以超越共同的远地点推断任务复杂的神经网络。