In this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids based on deterministic particles. Our approach integrates a finite element discretization for the macroscopic fluid dynamic equation with a deterministic variational particle scheme for the microscopic Fokker-Planck equation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained micro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of our method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical solutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extension flow, pure shear flow, and lid-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key rheological phenomena in the original FENE model, including hysteresis and $\delta$-function-like spike behavior in extension flows, velocity overshoot phenomenon in pure shear flow, symmetries breaking, vortex center shifting and vortices weakening in the lid-driven cavity flow, with a small number of particles.
翻译:本文介绍一种新的方法,基于确定性粒子离散化微观-宏观聚合物流模型。我们的方法将宏观流体动力学方程的有限元离散化与微观Fokker-Planck方程的确定性变分粒子方案相结合。为了解决微观-宏观耦合引起的挑战,我们采用离散弹性变分方法,首先为粒子逼近的粗粒化微观-宏观模型推导出一个宏观模型,然后针对粗粒化模型开发一个粒子-有限元离散化方法。通过将计算速度场与已有的解析结果进行比较,评估了我们方法在库埃特流中Hookean哑铃模型中的准确性。我们还使用我们的方法在不同情况下研究非线性FENE哑铃模型,如拉伸流、纯剪切流和驱动盖腔流。数值实例证明了所提出的确定性粒子方法可以使用很少的粒子准确捕获原始FENE模型中的各种关键流变现象,包括拉伸流中的迟滞和$\delta$-函数-like尖峰行为、纯剪切流中的速度过冲现象,盖腔流中的对称性破坏、涡旋中心移动和涡旋减弱,等等。