Weakly-supervised object detection attempts to limit the amount of supervision by dispensing the need for bounding boxes, but still assumes image-level labels on the entire training set. In this work, we study the problem of training an object detector from one or few images with image-level labels and a larger set of completely unlabeled images. This is an extreme case of semi-supervised learning where the labeled data are not enough to bootstrap the learning of a detector. Our solution is to train a weakly-supervised student detector model from image-level pseudo-labels generated on the unlabeled set by a teacher classifier model, bootstrapped by region-level similarities to labeled images. Building upon the recent representative weakly-supervised pipeline PCL, our method can use more unlabeled images to achieve performance competitive or superior to many recent weakly-supervised detection solutions.
翻译:在这项工作中,我们研究了从一张或几张图像中训练一个带有图像级标签和一组全无标签图像的物体探测器的问题。这是一个半监管学习的极端案例,因为标签数据不足以吸引探测器的学习。我们的解决办法是,从教师分类模型产生的未贴标签的图像级伪标签模型中,从一个或几个图像中,从一个或几个图像中,从一个或几个图像中,从一个或几个图像级标签中,用图像级标签标签标签标签标签标签标签和一组更大的全无标签图像中,培养一个受监管的物体探测器。根据最近有代表性的、受监管的管道PCL,我们的方法可以使用更多未贴标签的图像实现性能竞争,或优于最近许多受监管薄弱的探测解决方案。