Even though simultaneous optimization of similarity metrics represents a standard procedure in the field of semantic segmentation, surprisingly, this does not hold true for image registration. To close this unexpected gap in the literature, we investigate in a complex multi-modal 3D setting whether simultaneous optimization of registration metrics, here implemented by means of primitive summation, can benefit image registration. We evaluate two challenging datasets containing collections of pre- to post-operative and pre- to intra-operative Magnetic Resonance Imaging (MRI) of glioma. Employing the proposed optimization we demonstrate improved registration accuracy in terms of Target Registration Error (TRE) on expert neuroradiologists' landmark annotations.
翻译:尽管在语义分割领域中,同时优化相似性度量是标准程序,但令人惊讶的是,在图像配准领域中这并不成立。为了填补文献中这个意外的空白,我们在复杂的多模态3D情况下研究了原始求和的同时优化配准度量是否有利于图像配准。我们评估了两个具有挑战性的数据集,其中包含胶质瘤的术前到术后和术前到术中磁共振成像。利用所提出的优化,我们证明了在专家神经放射学家的地标注释中,通过目标配准错误(TRE)的提高,可以提高配准的准确性。