项目名称: 图像超分辨率盲重建方法的若干关键问题研究

项目编号: No.61473330

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 其他

项目作者: 夏又生

作者单位: 福州大学

项目金额: 61万元

中文摘要: 图像超分辨率盲重建技术广泛应用于医疗成像、目标识别、卫星图像分析、公安侦破和交通安全检测等诸多领域。它要求在运动变形参数和模糊参数未知情形下,由一组低分辨率图像获取一幅质量好的高分辨率图像。该技术综合复杂,尚有许多要解决的问题,而降质重建模型、运动模糊辩识、快速鲁棒的重建方法是当前研究的关键和重点。申请项目旨在研究解决存在的关键问题。建立二维的超分辨率图像重建模型,解决传统一维重建模型的难以计算问题;研究基于图像灰度与特征的配准方法,提出基于噪声约束均方估计的鲁棒配准算法;研究二维回归移动平均参数估计,提出模糊盲辩识的快速算法,解决非凸的疑难问题;研究基于凸组合2-范数和1-范数度量的最优估计,研究最优次梯度与共轭下降技术,提出基于适应凸组合2-范数和1-范数度量的图像超分辨率盲重建的快速鲁棒算法,并在理论、计算、应用效果上予以证实,推动图像超分辨率重建技术在理论及实时应用上重要发展。

中文关键词: 系统辨识;运动模糊;图像融合;图像重建;计算机视觉

英文摘要: Blind super-resolution (SR) reconstruction techniques have been widely applied in many areas such as medical imaging, objective identification and satellite imaging analysis, and public security recovery and detection. Under unknown warping and blurring parameters, it requires obtaining a high resolution image from a sequence of low resolution images with warping, blur, and noise. Because of its complexity, there are problems to be solved and the imaging reconstruction model, the motion blur identification, and the fast and robust reconstruction algorithm have been key problems to be solved and challenging topic in the world. This project is to solve three key problems. Developing the 2D multi-channel reconstruction model between the high resolution image and the low-resolution image to overcome the computation difficulty in the 1D multi-channel model; studying image registration techniques, propose a noise-constrained image registration approach with robustness; studying 2D-ARMA parameter estimation, propose a 2D-ARMA-based method for fast blurr identification to solve the non-convex problem; studying 2D cost function for image reconstruction based on combining L2 norm and L1 norm, developing a super-resolution image blind reconstruction algorithm based on the 2D model, which effectively solves the problems of huge storage space and long calculation time required in the classical reconstruction process. Finally, we analyize the proposed algorithm convergence and error and show that the proposed new algorithm has a good performance in robustness and fast rate, so that the SR research work can make progress in the viewpoint of theory and application.

英文关键词: system identification;motion and blur;image fusion;image resconstruction;computer vision

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
专知会员服务
40+阅读 · 2021年9月30日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
61+阅读 · 2021年3月9日
专知会员服务
61+阅读 · 2021年3月6日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
32+阅读 · 2020年12月25日
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
从传统方法到深度学习,人脸关键点检测方法综述
机器之心
14+阅读 · 2017年12月17日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年5月3日
Arxiv
12+阅读 · 2021年11月1日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
20+阅读 · 2018年1月17日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
专知会员服务
40+阅读 · 2021年9月30日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
61+阅读 · 2021年3月9日
专知会员服务
61+阅读 · 2021年3月6日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
32+阅读 · 2020年12月25日
相关资讯
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
从传统方法到深度学习,人脸关键点检测方法综述
机器之心
14+阅读 · 2017年12月17日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员