We introduce a logic called distance neighborhood logic with acyclicity and connectivity constraints ($\mathsf{A\&C~DN}$ for short) which extends existential $\mathsf{MSO_1}$ with predicates for querying neighborhoods of vertex sets and for verifying connectivity and acyclicity of vertex sets in various powers of a graph. Building upon [Bergougnoux and Kant\'e, ESA 2019; SIDMA 2021], we show that the model checking problem for every fixed $\mathsf{A\&C~DN}$ formula is solvable in $n^{O(w)}$ time when the input graph is given together with a branch decomposition of mim-width $w$. Nearly all problems that are known to be solvable in polynomial time given a branch decomposition of constant mim-width can be expressed in this framework. We add several natural problems to this list, including problems asking for diverse sets of solutions. Our model checking algorithm is efficient whenever the given branch decomposition of the input graph has small index in terms of the $d$-neighborhood equivalence [Bui-Xuan, Telle, and Vatshelle, TCS 2013]. We therefore unify and extend known algorithms for tree-width, clique-width and rank-width. Our algorithm has a single-exponential dependence on these three width measures and asymptotically matches run times of the fastest known algorithms for several problems. This results in algorithms with tight run times under the Exponential Time Hypothesis ($\mathsf{ETH}$) for tree-width, clique-width and rank-width; the above mentioned run time for mim-width is nearly tight under the $\mathsf{ETH}$ for several problems as well. Our results are also tight in terms of the expressive power of the logic: we show that already slight extensions of our logic make the model checking problem para-$\mathsf{NP}$-hard when parameterized by mim-width plus formula length.


翻译:我们引入了一种逻辑,叫距离周边逻辑, 具有周期性和连通性限制 (=mathsf{A\C~DN}美元, 用于短期), 将存在性( mathsf{MSO_1}$) 的值延伸为美元=mathsf{masf{ MSO_1} 美元, 用于查询顶端的相邻区域, 用于核查连接性和顶端的周期性。 在[Bergougnoux和Kant\'e, ESA 2019; SIDMA 2021] 的基础上, 我们展示了每个固定的 $\mathxxxxxxxalxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) 度) 期间, 期间, 期间, 期间,期间, 直度的模型的模型的模型的模型的模型, 直度, 期间, 期间, 期间, 我们xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx内的运行的运行的运行的运行内的运行的运行的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月8日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
13+阅读 · 2021年3月29日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员