One essential problem in skeleton-based action recognition is how to extract discriminative features over all skeleton joints. However, the complexity of the recent State-Of-The-Art (SOTA) models for this task tends to be exceedingly sophisticated and over-parameterized. The low efficiency in model training and inference has increased the validation costs of model architectures in large-scale datasets. To address the above issue, recent advanced separable convolutional layers are embedded into an early fused Multiple Input Branches (MIB) network, constructing an efficient Graph Convolutional Network (GCN) baseline for skeleton-based action recognition. In addition, based on such the baseline, we design a compound scaling strategy to expand the model's width and depth synchronously, and eventually obtain a family of efficient GCN baselines with high accuracies and small amounts of trainable parameters, termed EfficientGCN-Bx, where ''x'' denotes the scaling coefficient. On two large-scale datasets, i.e., NTU RGB+D 60 and 120, the proposed EfficientGCN-B4 baseline outperforms other SOTA methods, e.g., achieving 91.7% accuracy on the cross-subject benchmark of NTU 60 dataset, while being 3.15x smaller and 3.21x faster than MS-G3D, which is one of the best SOTA methods. The source code in PyTorch version and the pretrained models are available at https://github.com/yfsong0709/EfficientGCNv1.


翻译:在基于骨架的行动识别方面,一个基本的问题是如何在所有骨架联合体中提取歧视性特征。然而,最近用于这项任务的国家-艺术(SOTA)模型的复杂性往往过于复杂和过度分化。模型培训和推断的效率低,增加了大型数据集中模型结构结构的验证成本。为了解决上述问题,最近先进的可分解的共变层被嵌入一个早期引信化的多输入处(MIB)网络,为基于骨架的行动识别构建一个高效的图形革命网络基准。此外,我们根据这种基准设计了一个复合缩放战略,以扩大模型的宽度和深度,最终获得一套高效的GCN基线,其精度高和少量的可训练参数。为了解决上述问题,“x”表示缩放系数。在两个大型数据集中,即NTU RGB+D 60和120, 拟议的高效的G-B级网络网络基准基线值战略,以扩大模型的宽度和深度和深度深度,而SOFA3的精确度是SO-TA前的SA方法。“x”中,在SOV-SV-SBx前的一个基础中,在SU-SBx中,在SBx中,在SUBx中,在SUBx前的一个基础中,在SUBx中,在SBx级前的精确度数据中,在SBx中,在SB-x中,在SB-x前的精确度中,在SB-x中,在SB-x前,在SU-x前,在SB-x中,在SBxxxxx中,在SBx,在S-xxxxx,在S-x,在S-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
10+阅读 · 2021年2月4日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员