Even in recent neural network architectures such as Transformers and Extended LSTM (xLSTM), and traditional ones like Convolutional Neural Networks, Activation Functions are an integral part of nearly all neural networks. They enable more effective training and capture nonlinear data patterns. More than 400 functions have been proposed over the last 30 years, including fixed or trainable parameters, but only a few are widely used. ReLU is one of the most frequently used, with GELU and Swish variants increasingly appearing. However, ReLU presents non-differentiable points and exploding gradient issues, while testing different parameters of GELU and Swish variants produces varying results, needing more parameters to adapt to datasets and architectures. This article introduces a novel set of activation functions called Zorro, a continuously differentiable and flexible family comprising five main functions fusing ReLU and Sigmoid. Zorro functions are smooth and adaptable, and serve as information gates, aligning with ReLU in the 0-1 range, offering an alternative to ReLU without the need for normalization, neuron death, or gradient explosions. Zorro also approximates functions like Swish, GELU, and DGELU, providing parameters to adjust to different datasets and architectures. We tested it on fully connected, convolutional, and transformer architectures to demonstrate its effectiveness.
翻译:暂无翻译