To enable video models to be applied seamlessly across video tasks in different environments, various Video Unsupervised Domain Adaptation (VUDA) methods have been proposed to improve the robustness and transferability of video models. Despite improvements made in model robustness, these VUDA methods require access to both source data and source model parameters for adaptation, raising serious data privacy and model portability issues. To cope with the above concerns, this paper firstly formulates Black-box Video Domain Adaptation (BVDA) as a more realistic yet challenging scenario where the source video model is provided only as a black-box predictor. While a few methods for Black-box Domain Adaptation (BDA) are proposed in image domain, these methods cannot apply to video domain since video modality has more complicated temporal features that are harder to align. To address BVDA, we propose a novel Endo and eXo-TEmporal Regularized Network (EXTERN) by applying mask-to-mix strategies and video-tailored regularizations: endo-temporal regularization and exo-temporal regularization, performed across both clip and temporal features, while distilling knowledge from the predictions obtained from the black-box predictor. Empirical results demonstrate the state-of-the-art performance of EXTERN across various cross-domain closed-set and partial-set action recognition benchmarks, which even surpassed most existing video domain adaptation methods with source data accessibility.


翻译:为使视频模型在不同环境中的视频任务之间能够无缝地应用,已经提出了各种视频不受监督的域适应(VUDA)方法,以提高视频模型的稳健性和可转让性。尽管在模型稳健性方面有所改进,但这些VUDA方法要求获取源数据和源模型参数,以适应为目的,从而引起严重的数据隐私和模式可移植问题。为了应对上述关切,本文首先将黑盒视频域适应(BVDA)作为一种更现实、更具有挑战性的情景,即源视频模型仅作为黑盒预测器提供。虽然在图像域中提出了几种黑盒域适应(BDA)方法,但这些方法无法适用于视频域,因为视频模式具有更复杂的时间特征,更难以协调。为了应对 BVDA,我们建议采用新颖的 Endo 和 eX- Termoral Contracization 网络(EXTERN),为此采用掩码组合战略和视频连锁调校正的正规化:在黑盒和时空域域域内进行常规调校正规范化,同时展示从黑格和时间域域域域域域域域预测中获取的预测结果。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2021年3月29日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员