The viral load of patients infected with SARS-CoV-2 varies on logarithmic scales and possibly with age. Controversial claims have been made in the literature regarding whether the viral load distribution actually depends on the age of the patients. Such a dependence would have implications for the COVID-19 spreading mechanism, the age-dependent immune system reaction, and thus for policymaking. We hereby develop a method to analyze viral-load distribution data as a function of the patients' age within a flexible, non-parametric, hierarchical, Bayesian, and causal model. This method can be applied to other contexts as well, and for this purpose, it is made freely available. The developed reconstruction method also allows testing for bias in the data. This could be due to, e.g., bias in patient-testing and data collection or systematic errors in the measurement of the viral load. We perform these tests by calculating the Bayesian evidence for each implied possible causal direction. When applying these tests to publicly available age and SARS-CoV-2 viral load data, we find a statistically significant increase in the viral load with age, but only for one of the two analyzed datasets. If we consider this dataset, and based on the current understanding of viral load's impact on patients' infectivity, we expect a non-negligible difference in the infectivity of different age groups. This difference is nonetheless too small to justify considering any age group as noninfectious.
翻译:受SARS-COV-2感染的病人的病毒负荷在对数尺度上各不相同,而且可能与年龄有关。文献中对病毒负荷分布是否实际取决于病人的年龄提出了争议性主张。这种依赖性将对COVID-19传播机制、依赖年龄的免疫系统反应,从而对决策产生影响。我们特此制定一种方法,分析病毒负荷分布数据,作为病人年龄在灵活、非参数、等级、Bayesian和因果模型中的函数。这种方法也可以适用于其他环境,并为此目的免费提供。开发的重建方法还允许测试数据中的偏差。这可能是由于病人测试和数据收集中的偏差或病毒负荷测量中的系统错误。我们通过计算每种隐含的因果关系方向的巴伊斯证据来进行这些测试。在将这些测试应用于公开提供的年龄和SARS-CV-2病毒负荷数据时,我们发现病毒负荷在统计上明显增加,年龄也因此可以免费使用,但只允许用于数据中的偏差。这也可能是因为,例如,病人在病人的诊断和目前两种类型之间,我们考虑到这种不可靠的数据是不同的类别。