Data center networking is the central infrastructure of the modern information society. However, benchmarking them is very challenging as the real-world network traffic is difficult to model, and Internet service giants treat the network traffic as confidential. Several industries have published a few publicly available network traces. However, these traces are collected from specific data center environments, e.g., applications, network topology, protocols, and hardware devices, and thus cannot be scaled to different users, underlying technologies, and varying benchmarking requirements. This article argues we should scale different data center applications and environments in designing, implementing, and evaluating data center networking benchmarking. We build DCNetBench, the first application-driven data center network benchmarking that can scale to different users, underlying technologies, and varying benchmarking requirements. The methodology is as follows. We built an emulated system that can simulate networking with different configurations. Then we run applications on the emulated systems to capture the realistic network traffic patterns; we analyze and classify these patterns to model and replay those traces. Finally, we provide an automatic benchmarking framework to support this pipeline. The evaluations on DCNetBench show its scaleability, effectiveness, and diversity for data center network benchmarking.
翻译:数据中心网络是现代信息社会的核心基础设施。 但是,由于真实世界网络交通难以建模,互联网服务巨头将网络交通视为机密性,因此,对数据库进行基准评估是非常困难的。一些行业公布了一些公开的网络跟踪。然而,这些痕迹是从特定的数据中心环境中收集的,例如应用程序、网络地形学、协议和硬件设备,因此无法向不同的用户、基础技术和不同的基准要求扩展。本文章认为,我们应该在设计、实施和评价数据中心网络基准时,对数据中心应用和环境进行规模评估。我们建立了DCNetBench,这是第一个可以向不同用户、基础技术和不同基准要求进行规模评估的应用数据中心网络基准。该方法如下:我们建立了一个模拟不同配置的网络的模拟系统。然后我们在模拟的系统上运行应用程序,以捕捉现实的网络交通模式;我们对这些模式进行分析和分类,以模拟和重现这些痕迹。最后,我们提供了一个自动基准框架来支持这一管道。对DCNetBench的评估显示了其规模、有效性和多样性。