Code Large Language Models (LLMs) have demonstrated remarkable capabilities in generating, understanding, and manipulating programming code. However, their training process inadvertently leads to the memorization of sensitive information, posing severe privacy risks. Existing studies on memorization in LLMs primarily rely on prompt engineering techniques, which suffer from limitations such as widespread hallucination and inefficient extraction of the target sensitive information. In this paper, we present a novel approach to characterize real and fake secrets generated by Code LLMs based on token probabilities. We identify four key characteristics that differentiate genuine secrets from hallucinated ones, providing insights into distinguishing real and fake secrets. To overcome the limitations of existing works, we propose DESEC, a two-stage method that leverages token-level features derived from the identified characteristics to guide the token decoding process. DESEC consists of constructing an offline token scoring model using a proxy Code LLM and employing the scoring model to guide the decoding process by reassigning token likelihoods. Through extensive experiments on four state-of-the-art Code LLMs using a diverse dataset, we demonstrate the superior performance of DESEC in achieving a higher plausible rate and extracting more real secrets compared to existing baselines. Our findings highlight the effectiveness of our token-level approach in enabling an extensive assessment of the privacy leakage risks associated with Code LLMs.
翻译:暂无翻译