When observations are independent, formulae and software are readily available to plan and design studies of appropriate size and power to detect important associations. When observations are correlated or clustered, results obtained from the standard software require adjustment. This tutorial compares two approaches, using examples that illustrate various designs for both independent and clustered data. One approach obtains initial estimates using software that assume independence among observations, then adjusts these estimates using a design effect (DE), also called a variance inflation factor (VIF). A second approach generates estimates using generalized linear mixed models (GLMM) that account directly for patterns of clustering and correlation. The two approaches generally produce similar estimates and so validate one another. For certain clustered designs, small differences in power estimates emphasize the importance of specifying an alternative hypothesis in terms of means but also in terms of expected variances and covariances. Both approaches to power estimation are sensitive to assumptions concerning the structure or pattern of independence or correlation among clustered outcomes.
翻译:如果观测是独立的,公式和软件就可随时用于规划和设计关于适当规模和力量的研究,以发现重要关联;如果观测是相互关联的或集群的,标准软件的结果需要调整;这种教益比较两种方法,采用说明独立和集群数据的各种设计的例子;一种方法利用假设各观察之间独立的软件获得初步估计数,然后使用设计效果(DE)调整这些估计数,也称为差异通货膨胀系数(VIF);第二种方法利用通用线性混合模型(GLMM)得出估计数,这些模型直接反映集群和关联模式;两种方法一般产生相似的估计数,从而相互验证;对于某些集群设计,权力估计数的细小差异强调在手段方面说明替代假设的重要性,但也在预期差异和共变方面。两种权力估计方法都对关于集群结果之间独立或关联的结构或模式的假设很敏感。